Ready to nerd out and revolutionize your social media game? Buckle up, because we're about to create something incredible - a Social Media AI Agent that will transform your digital marketing strategy. Imagine having an assistant that never sleeps, always knows the latest trends, and can churn out engaging content across all your platforms. This isn't just cool; it's the future of social media management at your fingertips. So, throw on your favorite hoodie, grab your go-to energy drink, and let's dive into the world of AI-powered social media automation!
Disclaimer
This project is technical and involves a significant amount of code. However, don't let that intimidate you! We've designed this guide with placeholders for API keys and clear explanations for each step. Whether you're a seasoned developer or an ambitious marketer with some coding knowledge, you'll be able to follow along and adapt this project to your needs.
Project Overview:
Our Social Media AI Agent will be capable of monitoring trends, generating content ideas, creating posts, and scheduling them across multiple social media platforms. It will use advanced AI models for content generation and analysis, while integrating with various social media APIs for posting and data collection.
Required Components:
- Python
- OpenAI's GPT model
- AgentOps for monitoring
- APIs for Twitter, Facebook, Instagram, and LinkedIn
- Docker for containerization
Let's break down the process into manageable steps:
1. Setting Up the Environment
First, we need to create a dedicated environment for our project:
mkdir social_media_agent
cd social_media_agent
python -m venv venv
source venv/bin/activate # On Windows, use venv\Scripts\activate
2. Installing Dependencies
Create a `requirements.txt` file with the following content:
openai==1.3.0
agentops==0.1.7
python-dotenv==1.0.0
tweepy==4.14.0
facebook-sdk==3.1.0
instagram-private-api==1.6.0
linkedin-api==2.0.0
aschedule==1.1.0
Install these dependencies:
pip install -r requirements.txt
3. Configuring API Keys
Create a `.env` file to securely store your API keys:
OPENAI_API_KEY=your_openai_api_key_here
AGENTOPS_API_KEY=your_agentops_api_key_here
TWITTER_API_KEY=your_twitter_api_key
TWITTER_API_SECRET=your_twitter_api_secret
TWITTER_ACCESS_TOKEN=your_twitter_access_token
TWITTER_ACCESS_TOKEN_SECRET=your_twitter_access_token_secret
TWITTER_USERNAME=your_twitter_username
FACEBOOK_ACCESS_TOKEN=your_facebook_access_token
FACEBOOK_PAGE_ID=your_facebook_page_id
INSTAGRAM_USERNAME=your_instagram_username
INSTAGRAM_PASSWORD=your_instagram_password
LINKEDIN_EMAIL=your_linkedin_email
LINKEDIN_PASSWORD=your_linkedin_password
LINKEDIN_COMPANY_ID=your_linkedin_company_id
4. Creating the Social Media Agent
Now, let's create the core of our AI agent in a file named social_media_agent.py. This file will use the API keys and credentials that we've already set up in our .env file. The code is designed to read these values from the environment variables, so you don't need to modify this file with your specific keys.
import os
import json
import time
from datetime import datetime, timedelta
import random
import threading
import agentops
import schedule
import tweepy
from facebook import GraphAPI
from instagram_private_api import Client as InstagramClient
from linkedin_api import Linkedin
from openai import OpenAI
class SocialMediaAgent:
def init(self, openai_client):
self.openai_client = openai_client
self.industry = "technology" # Set your industry here
self.last_trends_check = None
self.current_trends = []
self.fine_tuned_model = None
self.recent_posts = []
# Set up API clients
self.twitter_client = self.setup_twitter_client()
self.facebook_client = self.setup_facebook_client()
self.instagram_client = self.setup_instagram_client()
self.linkedin_client = self.setup_linkedin_client()
self.scheduled_posts = []
self.scheduler_thread = threading.Thread(target=self.run_scheduler)
self.scheduler_thread.start()
def setup_twitter_client(self):
auth = tweepy.OAuthHandler(os.getenv('TWITTER_API_KEY'), os.getenv('TWITTER_API_SECRET'))
auth.set_access_token(os.getenv('TWITTER_ACCESS_TOKEN'), os.getenv('TWITTER_ACCESS_TOKEN_SECRET'))
return tweepy.API(auth)
def setup_facebook_client(self):
return GraphAPI(os.getenv('FACEBOOK_ACCESS_TOKEN'))
def setup_instagram_client(self):
return InstagramClient(os.getenv('INSTAGRAM_USERNAME'), os.getenv('INSTAGRAM_PASSWORD'))
def setup_linkedin_client(self):
return Linkedin(os.getenv('LINKEDIN_EMAIL'), os.getenv('LINKEDIN_PASSWORD'))
def run_scheduler(self):
while True:
schedule.run_pending()
time.sleep(1)
def collect_training_data(self):
training_data = []
# Collect tweets
tweets = self.twitter_client.user_timeline(screen_name=os.getenv('TWITTER_USERNAME'), count=500)
for tweet in tweets:
if tweet.created_at < datetime(2023, 1, 1): # Adjust this date as needed
training_data.append(tweet.text)
# Collect Facebook posts
facebook_posts = self.facebook_client.get_connections(os.getenv('FACEBOOK_PAGE_ID'), 'posts')
for post in facebook_posts['data']:
if 'message' in post and post['created_time'] < '2023-01-01T00:00:00+0000':
training_data.append(post['message'])
# Collect LinkedIn posts
linkedin_posts = self.linkedin_client.get_company_updates(os.getenv('LINKEDIN_COMPANY_ID'))
for post in linkedin_posts:
if 'content' in post and 'title' in post['content'] and post['created']['time'] < 1672531200000:
training_data.append(post['content']['title'])
return training_data
def fine_tune_model(self, training_data):
prepared_data = [{"prompt": "Create a social media post:", "completion": post} for post in training_data]
with open('training_data.jsonl', 'w') as f:
for entry in prepared_data:
json.dump(entry, f)
f.write('\n')
file = self.openai_client.File.create(file=open('training_data.jsonl', 'rb'), purpose='fine-tune')
fine_tune_job = self.openai_client.FineTune.create(training_file=file.id, model="davinci")
while fine_tune_job.status != "succeeded":
fine_tune_job = self.openai_client.FineTune.retrieve(id=fine_tune_job.id)
print(f"Fine-tuning status: {fine_tune_job.status}")
time.sleep(60)
return fine_tune_job.fine_tuned_model
@agentops.record_function('monitor_trends')
def monitor_trends(self):
if self.last_trends_check is None or datetime.now() - self.last_trends_check > timedelta(hours=6):
prompt = f"List 5 current trending topics in the {self.industry} industry, separated by commas."
response = self.openai_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}]
)
self.current_trends = [trend.strip() for trend in response.choices[0].message.content.split(',')]
self.last_trends_check = datetime.now()
return self.current_trends
@agentops.record_function('generate_content_ideas')
def generate_content_ideas(self, trends):
ideas = []
for trend in trends:
prompt = f"Generate a content idea for a social media post about '{trend}' in the {self.industry} industry. Include a suggested hashtag."
response = self.openai_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}]
)
ideas.append(response.choices[0].message.content)
return ideas
@agentops.record_function('create_timely_post')
def create_timely_post(self, content_idea):
prompt = f"Create a compelling social media post based on this idea: {content_idea}. The post should be engaging and no more than 280 characters."
response = self.openai_client.chat.completions.create(
model=self.fine_tuned_model,
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message.content
@agentops.record_function('schedule_post')
def schedule_post(self, post, platform, scheduled_time):
job = schedule.every().day.at(scheduled_time.strftime("%H:%M")).do(
self.post_to_social_media, post, platform
)
self.scheduled_posts.append({
"content": post,
"platform": platform,
"scheduled_time": scheduled_time,
"job": job
})
return f"Post scheduled for {platform} at {scheduled_time}"
@agentops.record_function('post_to_social_media')
def post_to_social_media(self, post, platform):
if platform.lower() == 'twitter':
return self.post_to_twitter(post)
elif platform.lower() == 'facebook':
return self.post_to_facebook(post)
elif platform.lower() == 'instagram':
return self.post_to_instagram(post)
elif platform.lower() == 'linkedin':
return self.post_to_linkedin(post)
else:
raise ValueError(f"Unsupported platform: {platform}")
def post_to_twitter(self, post):
try:
tweet = self.twitter_client.update_status(post)
return f"Posted to Twitter. Tweet ID: {tweet.id}"
except Exception as e:
return f"Failed to post to Twitter: {str(e)}"
def post_to_facebook(self, post):
try:
page_id = os.getenv('FACEBOOK_PAGE_ID')
result = self.facebook_client.put_object(page_id, "feed", message=post)
return f"Posted to Facebook. Post ID: {result['id']}"
except Exception as e:
return f"Failed to post to Facebook: {str(e)}"
def post_to_instagram(self, post):
try: # Note: This is a simplified version. In reality, you'd need to create an image.
result = self.instagram_client.post_photo(post, caption=post)
return f"Posted to Instagram. Media ID: {result['media']['id']}"
except Exception as e:
return f"Failed to post to Instagram: {str(e)}"
def post_to_linkedin(self, post):
try:
company_id = os.getenv('LINKEDIN_COMPANY_ID')
result = self.linkedin_client.create_company_share(company_id, post)
return f"Posted to LinkedIn. Activity ID: {result['activity_id']}"
except Exception as e:
return f"Failed to post to LinkedIn: {str(e)}"
@agentops.record_function('run_content_cycle')
def run_content_cycle(self):
trends = self.monitor_trends()
content_ideas = self.generate_content_ideas(trends)
posts = []
for idea in content_ideas:
post = self.create_timely_post(idea)
for platform in ["Twitter", "Facebook", "Instagram", "LinkedIn"]:
if self.should_post_immediately(platform):
result = self.post_to_social_media(post, platform)
posts.append({"content": post, "platform": platform, "result": result, "type": "immediate"})
else:
scheduled_time = self.get_optimal_posting_time(platform)
result = self.schedule_post(post, platform, scheduled_time)
posts.append({"content": post, "platform": platform, "result": result, "type": "scheduled"})
self.recent_posts.append(post)
return posts
def should_post_immediately(self, platform):
# This is a placeholder. Implement your own logic here.
return random.choice([True, False])
def get_optimal_posting_time(self, platform):
# This is a placeholder. Implement your own logic here.
return datetime.now() + timedelta(hours=random.randint(1, 24))
def get_scheduled_posts(self):
return [{"content": post["content"],
"platform": post["platform"],
"scheduled_time": post["scheduled_time"]}
for post in self.scheduled_posts]
def cancel_scheduled_post(self, index):
if 0 <= index < len(self.scheduled_posts):
post = self.scheduled_posts.pop(index)
schedule.cancel_job(post["job"])
return f"Cancelled scheduled post for {post['platform']} at {post['scheduled_time']}"
else:
return "Invalid post index"
def perform_style_check(self, recent_posts):
prompt = "Analyze the following recent posts and determine if they match our brand voice and style:\n\n"
prompt += "\n".join(recent_posts)
prompt += "\n\nDo these posts match our established style? Provide a yes/no answer and a brief explanation."
response = self.openai_client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message.content
def get_recent_posts(self, count=10):
return self.recent_posts[-count:]
5. Creating the Main Script
Create a main.py file to run the Social Media Agent. This script will load the environment variables from your .env file, so all the necessary API keys and credentials will be automatically available to the Social Media Agent.
import time
import atexit
from openai import OpenAI
import agentops
import os
from dotenv import load_dotenv
from social_media_agent import SocialMediaAgent
load_dotenv()
openai = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
agentops.init(os.getenv("AGENTOPS_API_KEY"))
def main():
agent = SocialMediaAgent(openai)
if agent.fine_tuned_model is None:
training_data = agent.collect_training_data()
agent.fine_tuned_model = agent.fine_tune_model(training_data)
style_check_interval = 7 * 24 * 3600 # 7 days
last_style_check = time.time()
def cleanup():
print("Shutting down scheduler...")
agent.scheduler_thread.join(timeout=1)
atexit.register(cleanup)
while True:
try:
agent.run_content_cycle()
if time.time() - last_style_check > style_check_interval:
recent_posts = agent.get_recent_posts()
style_analysis = agent.perform_style_check(recent_posts)
print(f"Style Check Results: {style_analysis}")
last_style_check = time.time()
time.sleep(3600) # Wait an hour before the next cycle
except Exception as e:
print(f"An error occurred: {e}")
agentops.end_session("Fail")
print(f"Cycle completed. Sleeping for 1 hour.")
if __name__ == "__main__":
main()
6. Containerizing the Application
Create a Dockerfile to containerize the application. When we run the container, we'll pass the .env file to ensure all the necessary environment variables (including API keys and credentials) are available within the container.
FROM python:3.9-slim
WORKDIR /app
COPY . /app
RUN pip install --no-cache-dir -r requirements.txt
EXPOSE 80
ENV NAME SocialMediaAgent
CMD ["python", "main.py"]
7. Building and Running the Container
Build the Docker image:
docker build -t social-media-agent
Run the container:
docker run -d --name social-media-agent --env-file .env social-media-agent
Boosting Efficiency and Creativity
By implementing this Social Media AI Agent, you're not just automating tasks – you're freeing up valuable time for your marketing team. Instead of spending hours on repetitive posting and trend research, your team can focus on high-level strategy, creative campaigns, and meaningful customer interactions. This AI assistant handles the day-to-day grind, allowing your human marketers to do what they do best: innovate and create compelling brand narratives. The result? A more efficient, creative, and dynamic marketing approach that leverages the best of both AI capabilities and human ingenuity.
Wrap Up
We've successfully created a Social Media AI Agent capable of monitoring trends, generating content, and managing posts across multiple platforms. This agent leverages the power of AI to streamline your social media marketing efforts, allowing for more efficient and data-driven strategies.
Remember, while this AI agent can significantly enhance your social media presence, it's important to maintain human oversight. Regularly review the generated content and analytics to ensure alignment with your brand voice and marketing goals.
By implementing this Social Media AI Agent, you're taking a significant step towards automating and optimizing your social media marketing. As you use and refine this tool, you'll likely discover new ways to leverage AI in your marketing strategies, keeping you at the forefront of digital marketing innovation.
Want Help?
We provide expert guidance so you can use AI to lift business performance. The 33A AI Design Sprint™ process is the foundation for our approach. We help you discover the most promising AI use cases, so you can apply AI for massive efficiency gains in your business. Schedule a strategy call to learn more.
Want to catch up on earlier issues? Explore the Hub, your AI resource.
Magnetiz.ai is your AI consultancy. We work with you to develop AI strategies that improve efficiency and deliver a competitive edge.